题目描述 Description
在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7)
这些点可以用 k 个矩形(1<=k<4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
输入描述 Input Description
n k
xl y1x2 y2
... ...xn yn (0<=xi,yi<=500)输出描述 Output Description
一个整数,即满足条件的最小的矩形面积之和。
样例输入 Sample Input
4 2
1 12 23 60 7样例输出 Sample Output
4
数据范围及提示 Data Size & Hint
k<4
官方是k<=4,但是标程解法在k=4时是有反例的。官方的数据也没有出现k=4的情况
/* 由于k<=3,所以可以分着做 */#include#include #include #include #define N 52#define INF 10000000using namespace std;int n,m;struct node{ int x,y;};node a[N];bool cmp1(const node&s1,const node&s2){ return s1.x